
Docker	Automation	with
Dockerfiles	(Linux)
Friday,	August	4,	2017	4:52	PM

Learn	how	to	automate	the	build	of	a	custom	Linux-based
Docker	image	from	a	Dockerfile.

This	workshop	will	show	you	how	to	automate	the	building	and	configuring	of	a	Linux-based
Docker	image	by	utilizing	Dockerfiles.	You	will	construct	a	Dockerfile	by	mimicking	a	production
environment	configuration.	You'll	also	learn	some	of	the	options	for	a	Dockerfile	configuration.

What	You	Will	Learn
Constructing	a	Dockerfile	for	Linux-based	Builds
Various	Dockerfile	Configuration	Options
Building	a	Docker	Image	from	a	Dockerfile

Ideal	Audience
IT	Managers
Developers	and	Software	Architects
Configuration	and	Change	Managers
DevOps	Engineers

This	workshop	will	show	you	how	to	automate	the	building	and	configuring	of	a	Linux-based	Docker
image	by	utilizing	Dockerfiles.	You	will	construct	a	Dockerfile	by	mimicking	a	production	environment
configuration.	You'll	also	learn	some	of	the	options	for	a	Dockerfile	configuration.

Time	Estimate:	45	minutes

Overview

Setup	Requirements
The	following	workshop	will	require	that	you	use	a	Telnet/SSH	client	in	order	to	connect	to	a	remote
machine.	If	you	do	not	have	a	SSH	client,	then	PuTTY	will	work	fine.	Depending	on	your	environment,
download	the	executable	in	a	standalone	file	(.EXE)	or	an	installable	package	(.MSI),	either	in	a	32-bit
or	64-bit.

Additional	Requirements
For	the	following	workshop,	you	will	need	a	subscription	(trial	or	paid)	to	Microsoft	Azure.	Please	see
the	next	page	for	how	to	create	a	trial	subscription,	if	necessary.

Requirements

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
Azure_Registration.html

Azure
We	need	an	active	Azure	subscription	in	order	to	perform	this	workshop.	There	are	a	few	ways	to
accomplish	this.	If	you	already	have	an	active	Azure	subscription,	you	can	skip	the	remainder	of	this
page.	Otherwise,	you'll	either	need	to	use	an	Azure	Pass	or	create	a	trial	account.	The	instructions	for
both	are	below.

Azure	Pass
If	you've	been	provided	with	a	voucher,	formally	known	as	an	Azure	Pass,	then	you	can	use	that	to
create	a	subscription.	In	order	to	use	the	Azure	Pass,	direct	your	browser	to
https://www.microsoftazurepass.com	and,	following	the	prompts,	use	the	code	provided	to	create
your	subscription.

Trial	Subscription
Direct	your	browser	to	https://azure.microsoft.com/en-us/free/	and	begin	by	clicking	on	the	green
button	that	reads	Start	free.

1.	 In	the	first	section,	complete	the	form	in	its	entirety.	Make	sure	you	use	your	real	email
address	for	the	important	notifications.

2.	 In	the	second	section,	enter	a	real	mobile	phone	number	to	receive	a	text	verification
number.	Click	send	message	and	re-type	the	received	code.

3.	 Enter	a	valid	credit	card	number.	NOTE:	You	will	not	be	charged.	This	is	for	verification	of
identity	only	in	order	to	comply	with	federal	regulations.	Your	account	statement	may	see	a
temporary	hold	of	$1.00	from	Microsoft,	but,	again,	this	is	for	verification	only	and	will	"fall
off"	your	account	within	2-3	banking	days.

4.	 Agree	to	Microsoft's	Terms	and	Conditions	and	click	Sign	Up.

This	may	take	a	minute	or	two,	but	you	should	see	a	welcome	screen	informing	you	that	your
subscription	is	ready.	Like	the	Office	365	trial	above,	the	Azure	subscription	is	good	for	up	to	$200	of
resources	for	30	days.	After	30	days,	your	subscription	(and	resources)	will	be	suspended	unless	you
convert	your	trial	subscription	to	a	paid	one.	And,	should	you	choose	to	do	so,	you	can	elect	to	use	a
different	credit	card	than	the	one	you	just	entered.

Azure	Registration

https://www.microsoftazurepass.com/
https://azure.microsoft.com/en-us/free/

Congratulations!	You've	now	created	an	Office	365	tenant;	an	Azure	tenant	and	subscription;	and,
have	linked	the	two	together.

Overview
This	workshop	contains	two	routes	-	one	for	constructing	a	Dockerfile	in	Ubuntu	and	another	for
CentOS.	The	steps	are	primarily	the	same,	but	the	separate	sections	were	provided	to	minimize
confusion.

In	this	workshop,	you	will	first	build	a	'production'	web	server	environment	on	the	actual	virtual
machine.	You	will	then	take	those	same	steps	and	replicate	them	in	a	Dockerfile	for	building	a
containerized	version	of	your	VM.

The	steps	in	this	workshop	are	not	extremely	tedious.	However,	they	are	broken	out	into	individual
pages	for	a	couple	of	reasons.	First,	it	is	to	simplify	the	process	and	aid	you	in	your	comprehension.
Second,	it	is	for	the	purpose	of	you	seeing	the	actual	steps	of	building	the	production	virtual	machine
so	that	you	comprehend	what	you	are	doing	as	you	add	each	step	to	the	Dockerfile.

Introduction

Objective
All	of	our	work	in	this	workshop,	with	the	exception	of	the	small	Azure	configuration	at	the	end,	will
be	performed	on	a	single	virtual	machine.	Let's	get	started	creating	that	VM.

Create	a	Resource	Group
In	order	to	create	resources,	we	need	a	Resource	Group	to	place	them	in.

1.	 If	you	are	not	there	already,	go	ahead	and	click	on	the	Resource	Groups	 	in	the	Azure
Portal	to	open	the	Resource	Groups	blade.

2.	 At	the	top	of	the	Resource	Groups	blade,	click	on	Add	 .	This	will	open	a	panel	that	asks
for	some	basic	configuration	settings.

3.	 Complete	the	configuration	settings	with	the	following:

Resource	group	name:	azworkshops_dockerfile_ubuntu_demo
Subscription:	<choose	your	subscription>
Resource	group	location:	<choose	your	location>

4.	 <Optional>	Check	Pin	to	dashboard	at	the	bottom	of	the	panel.

5.	 Click	Create.

6.	 It	should	only	take	a	second	for	the	resource	group	to	be	created.	Once	you	click	create,	the
configuration	panel	closes	and	returns	you	to	the	list	of	available	resource	groups.	Your
recently	created	group	may	not	be	visible	in	the	list.	Clicking	on	Refresh	 	at	the	top	of
the	Resource	Groups	blade	should	display	your	new	resource	group.

NOTE:	When	you	create	a	resource	group,	you	are	prompted	to	choose	a	location.	Additionally,	as
you	create	individual	resources,	you	will	also	be	prompted	to	choose	locations.	The	location	of
resource	groups	and	their	resources	can	be	different.	This	is	because	resource	groups	store	metadata
describing	their	contained	resources;	and,	due	to	some	types	of	compliance	that	your	company	may
adhere	to,	you	may	need	to	store	that	metadata	in	a	different	location	than	the	resources
themselves.	For	example,	if	you	are	a	US-based	company,	you	may	choose	to	keep	the	metadata
state-side	while	creating	resources	in	foreign	regions	to	reduce	latency	for	the	end-user.

Create	Virtual	Machine

Create	a	Virtual	Machine
Now	that	we	have	an	available	resource	group,	let's	create	the	actual	Ubuntu	server.

1.	 If	you	are	not	there	already,	go	ahead	and	navigate	to	the
azworkshops_dockerfile_ubuntu_demo	resource	group.

2.	 At	the	top	of	the	blade	for	our	group,	click	on	Add	 .	This	will	display	the	blade	for	the
Azure	Marketplace	allowing	you	to	deploy	a	number	of	different	solutions.

3.	 We	are	interested	in	deploying	an	Ubuntu	server.	Therefore,	in	the	Search	Everything	box,
type	in	Ubuntu	Server.	This	will	display	a	couple	of	different	versions.	Since	we	want	to
deploy	the	latest	stable	version	of	Ubuntu,	from	the	displayed	options,	choose	Ubuntu
Server	16.04	LTS.

4.	 This	will	display	a	blade	providing	more	information	about	the	server	we	have	chosen.	To
continue	creating	the	server,	choose	Create.

5.	 We	are	now	prompted	with	some	configuration	options.	There	are	3	sections	we	need	to
complete	and	the	last	section	is	a	summary	of	our	chosen	options.

1.	 Basics

Name:	dockerfile-ubuntu
VM	disk	type:	SSD
Username:	localadmin
Authentication	type:	Password
(NOTE:	You	can	choose	SSH	if	you	are	familiar	with	how	to	set	this	up.	If	you
are	not,	we	will	do	this	in	a	later	workshop.	However,	for	this	workshop,
Password	authentication	is	sufficient.)
Password:	Pass@word1234
Confirm	password:	<same	as	above>
Subscription:	<choose	your	subscription>
Resource	group:	Use	existing	-	azworkshops_dockerfile_ubuntu_demo
Location:	<choose	a	location>

2.	 Size

DS1_V2
3.	 Settings

Use	managed	disks:	No

Storage	account:	(click	on	it	&	Create	New)

Name:	dfubuntudata<random	number>	(ex.	dfubuntudata123456)
(NOTE:	This	name	must	be	globally	unique,	so	it	cannot	already	be
used.)
Performance:	Premium
Replication:	Locally-redundant	storage	(LRS)

Virtual	network:	<accept	default>	(e.g.	(new)
azworkshops_dockerfile_ubuntu_demo-vnet)

Subnet:	<accept	default>	(e.g.	default	(172.16.1.0/24))

Public	IP	address:	<accept	default>	(e.g.	(new)	dockerfile-ubuntu-ip)

Network	security	group	(firewall):	<accept	default>	(e.g.	(new)	dockerfile-
ubuntu-nsg)

Extensions:	No	extensions

Availability	set:	None

Boot	diagnostics:	Enabled

Guest	OS	diagnostics:	Disabled

Diagnostics	storage	account:	(click	on	it	&	Create	New)

Name:	dfubuntudiags<random	number>	(ex.
dfubuntudiags123456)
Performance:	Standard
Replication:	Locally-redundant	storage	(LRS)

4.	 Summary	(just	click	OK	to	continue)

This	machine	is	relatively	small,	but	with	containers,	it	can	still	deliver	some	pretty	impressive
performance.	Once	scheduled,	it	may	take	a	minute	or	two	for	the	machine	to	be	created	by	Azure.
Once	it	has	been	created,	Azure	should	open	the	machine's	status	blade	automatically.

Connect	to	the	Virtual	Machine
Once	your	machine	has	been	created,	we	can	remotely	connect	to	it	using	secure	shell	(SSH).	These
instructions	assume	that	you	do	not	have	strong	familiarity	with	SSH	and/or	that	you	have	no	built-in
SSH	client	in	your	local	OS.	For	this	reason,	we	will	be	using	the	PuTTY	client	we	downloaded	earlier
for	the	workshop.	However,	if	you	are	more	comfortable	using	another	Telnet/SSH	client	(e.g.	MacOS,
Linux,	Windows	Sub-Layer	(WSL)),	please	feel	free	to	use	it.

Get	Public	IP
1.	 If	it	is	not	already	open,	navigate	to	the	Overview	blade	of	your	newly	created	virtual

machine.

2.	 In	the	top	section	of	the	blade,	in	the	right	column,	you	should	see	a	Public	IP	address
listed.	

3.	 Copy	the	IP	address.

Connect	with	SSH
1.	 Open	PuTTY.

2.	 In	the	configuration	window:

Hostname:	<IP	address	from	previous	step>
Port:	22
Connection	type:	SSH

3.	 Click	Open

4.	 In	the	security	prompt,	click	Yes.

5.	 You	will	then	connect	to	the	remote	Ubuntu	server.

6.	 Enter	the	username	and	password	from	above	(e.g.	localadmin	and	Pass@word1234,
respectively).

7.	 You	should	then	see	the	 bash 	prompt:

localadmin@dockerfile-ubuntu:~$

Congratulations.	You	have	successfully	created	and	connected	to	your	remote	Ubuntu	server	in
Azure.	You	are	now	ready	to	install	the	Docker	runtime.

Overview
We	have	just	created	our	Ubuntu	server.	We	now	need	to	apply	any	available	system	updates	along
with	installing	and	configuring	Docker	to	begin	working	with	containers.

Install	Updates
Just	like	any	other	operating	system,	updates	are	periodically	released	to	support	new	features	and
patch	any	potential	security	threats.	We	will	apply	the	updates	first.

1.	 If	you	have	not	already,	connect	to	your	remote	Ubuntu	server	and	login.

2.	 From	the	login	prompt,	you	may	see	a	status	of	available	updates.	(If	not,	don't	be	too
alarmed	-	continue	with	these	steps	anyway	just	to	be	sure.)

3.	 First	we	need	to	ensure	our	list	of	sources	for	our	system	updates	are	up-to-date.	From	the

Install	Updates

command	prompt,	type	the	following:

sudo	apt-get	update

4.	 Now	we	can	install	updates.	From	the	command	prompt,	type	the	following	to	automatically
install	all	available	updates:

sudo	apt-get	upgrade	-y

5.	 Depending	on	the	number	and	size	of	available	updates,	this	process	may	take	a	few
minutes.	Now	would	be	a	good	time	to	take	a	break.

Overview
In	this	step,	we	are	going	to	install	Docker.	This	is	one	of	the	steps	that	will	actually	not	be	performed
inside	of	the	container	image.	But,	of	course,	we	need	Docker	on	the	host	in	order	to	run	containers.

Install	Docker
We	now	have	an	updated	Ubuntu	operating	system.	We	are	ready	to	install	Docker.

1.	 We	need	to	add	the	GPG	key	for	the	official	Docker	repository	to	the	system	because	in	the
next	step	we	want	to	download	the	Docker	'installer'	directly	from	Docker	and	not	the	default
Ubuntu	servers	to	ensure	we	get	the	latest	version	of	the	engine.	From	the	command
prompt,	type	the	following:

sudo	apt-key	adv	--keyserver	hkp://p80.pool.sks-keyservers.net:80	--recv-keys	5
8118E89F3A912897C070ADBF76221572C52609D

Copy	&	Paste
You	can	paste	this	into	PuTTY	by	right-clicking	the	terminal	screen.

2.	 Now,	we	need	to	tell	Ubuntu	where	the	Docker	repository	is	located.	From	the	command
prompt,	type	(or	paste)	the	following:

sudo	apt-add-repository	'deb	https://apt.dockerproject.org/repo	ubuntu-xenial	m
ain'

3.	 Once	again,	update	the	package	database	with	the	Docker	packages	from	the	newly	added
repository:

Install	Docker

sudo	apt-get	update

4.	 Make	sure	you	are	about	to	install	from	the	Docker	repository	instead	of	the	default	Ubuntu
repository:

apt-cache	policy	docker-engine

5.	 You	should	see	output	similar	to	the	following	(notice	that	 docker-engine 	is	not	installed	and
the	 docker-engine 	version	number	might	be	different):

docker-engine:
Installed:	(none)
Candidate:	1.11.1-0~xenial
Version	table:
			1.11.1-0~xenial	500
						500	https://apt.dockerproject.org/repo	ubuntu-xenial/main	amd64	Packages
			1.11.0-0~xenial	500
						500	https://apt.dockerproject.org/repo	ubuntu-xenial/main	amd64	Packages

6.	 Finally,	install	Docker:

sudo	apt-get	install	-y	docker-engine

7.	 Installing	the	Docker	engine	may	take	an	additional	minute	or	two.

Additional	Configuration
To	simplify	running	and	managing	Docker,	there's	some	additional	configuration	that	we	need	to
implement.	While	this	section	is	optional,	it	is	recommended	to	make	managing	Docker	much	easier.

Ensure	Docker	Engine	is	Running
1.	 From	the	command	prompt,	type:

sudo	systemctl	status	docker

2.	 You	should	see	something	similar	to	the	following:

●	docker.service	-	Docker	Application	Container	Engine
			Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	vendor	preset:	
enabled)
			Active:	active	(running)	since	Sun	2017-06-04	22:38:16	UTC;	4min	10s	ago
					Docs:	https://docs.docker.com
	Main	PID:	32844	(dockerd)

3.	 Because	the	service	is	running,	we	can	now	use	the	 docker 	command	later	in	this
workshop.

Enable	Docker	Engine	at	Startup
Let's	make	sure	the	Docker	engine	is	configured	to	run	on	system	startup	(and	reboot).

1.	 From	the	command	prompt,	type:

sudo	systemctl	enable	docker

2.	 You	should	see	something	similar	to	the	following:

Synchronizing	state	of	docker.service	with	SysV	init	with	/lib/systemd/systemd-
sysv-install...
Executing	/lib/systemd/systemd-sysv-install	enable	docker

Elevate	Your	Privileges
Be	default,	running	the	 docker 	command	requires	root	privileges	-	that	is,	you	have	to	prefix	the
command	with	 sudo .	It	can	also	be	run	by	a	user	in	the	docker	group,	which	is	automatically
created	during	the	install	of	Docker.	If	you	attempt	to	run	the	 docker 	command	without	prefixing	it
with	 sudo 	or	without	being	in	the	docker	group,	you'll	get	an	output	like	the	following:

docker:	Cannot	connect	to	the	Docker	daemon.	Is	the	docker	daemon	running	on	th
is	host?.
See	'docker	run	--help'.

To	avoid	typing	 sudo 	whenever	you	run	the	 docker 	command,	add	your	username	to	the	docker
group:

sudo	usermod	-aG	docker	$(whoami)

You	will	then	need	to	log	out	and	back	in	for	the	changes	to	take	effect.

If	you	need	to	add	another	user	to	the	 docker 	group	(one	in	which	you	have	not	logged	in	as
currently),	simply	provide	that	username	explicitly	in	the	command:

sudo	usermod	-aG	docker	<username>

You've	successfully	installed	the	Docker	engine.	You	have	also	configured	it	to	run	at	startup	and
have	added	yourself	to	the	Docker	group	so	that	you	have	sufficient	privileges	for	running	Docker.

Overview
Now	that	we	have	the	host	machine	configured	for	Docker,	we're	going	to	begin	building	our	web
server.	Keep	in	mind	that	this	virtual	machine	is	serving	two	purposes:	1)	our	Docker	host;	and,	2)
our	temporary	web	server	until	our	image	is	built.

Install	Node.js
Node.js	is	a	JavaScript	execution	engine	that	allows	us	to	write	server-side	JavaScript	and	utilize	it
like	any	other	executable	file.	With	Node.js,	we	will	host	a	very	simple	web	server.

Download	and	Install	Node.js	Runtime
The	Node.js	runtime	is	what	is	responsible	for	hosting	and	executing	our	JavaScript.

From	the	terminal	prompt,	type:

sudo	apt-get	install	-y	nodejs

Download	and	Install	NPM
NPM	is	an	abbreviation	for	Node	Package	Manager.	NPM	allows	us	to	install	Node.js	dependencies	for
our	applications.

At	the	prompt,	type:

sudo	apt-get	install	-y	npm

Create	Symbolic	Link
In	Linux,	a	symbolic	link	is	nothing	more	than	a	'virtual	pointer'	to	a	file.	It's	a	way	to	give	a	file	an
alias.	For	us,	we	going	to	do	two	things	with	a	symbolic	link.	First,	we're	going	to	get	 nodejs 	an
alias.	Second,	we're	going	to	make	the	executable	globally	available	so	that	it	can	be	called	from	any
folder.

At	the	prompt,	enter:

Install	Node.js

sudo	ln	-s	/usr/bin/nodejs	/usr/bin/node

This	will	create	a	pointer	called	 node 	that	points	to	 nodejs .	We	can	then	execute	Node.js	via	either
command.	However,	 node 	is	the	common	name	to	use.

Verify	Installation
Let's	make	sure	our	installation	was	successful.

At	the	prompt,	type:

node	-v
npm	-v

You	should	receive	version	numbers	for	both	commands.

Add	Build	Dependencies
Some	Node.js	libraries	have	outside	dependencies	that	aren't	necessarily	installed	in	Ubuntu	by
default.	Let's	install	those	now.

At	the	terminal	prompt,	type:

sudo	apt-get	install	build-essential

We've	now	successfully	completed	the	installation	of	Node.js	and	the	Node	Package	Manager.

Overview
We've	downloaded	most	of	our	dependencies.	In	this	step	we	will	download	a	demo	web	site	from
GitHub,	a	remote	source	code	repository.

Clone	the	Website
'Cloning'	is	the	method	in	which	you	download	a	remote	repository	to	your	local	machine.	We	are
going	to	clone	the	demo	web	site	to	the	default	web	hosting	folder	on	our	system.

From	the	command	prompt,	type	the	following:

sudo	git	clone	https://github.com/AzureWorkshops/samples-simple-nodejs-website.
git	/var/www

You	should	see	something	similar	to	the	following:

Cloning	into	'/var/www'...
remote:	Counting	objects:	9,	done.
remote:	Compressing	objects:	100%	(7/7),	done.
remote:	Total	9	(delta	0),	reused	6	(delta	0),	pack-reused	0
Unpacking	objects:	100%	(9/9),	done.
Checking	connectivity...	done.

The	website	source	code	has	now	been	downloaded.

Download	Sample	Website

Overview
Even	though	we've	installed	system	dependencies,	our	website	has	a	couple	of	library	dependencies
that	we	need	to	install.	We'll	also	ensure	that	the	website	is	functioning	correctly,	before	we	proceed
to	build	our	Dockerfile.

Download	Website	Dependencies
We'll	need	to	enter	into	the	website's	main	folder	to	install	the	dependencies.

Type	the	following	into	the	terminal:

cd	/var/www
sudo	npm	i

You	should	see	a	number	of	progress	bars	displayed	as	dependencies	are	downloaded	followed	by
what	looks	like	a	folder	hierarchy.

Test	Our	Website
The	first	thing	we	need	to	do	is	run	our	web	hosting	server	which	is	handled	by	Node.js.	If	we	ran	this
normally	from	the	command-line,	it	would	block	all	other	input.	We	would	then	have	to	open	a
second	terminal	to	test	our	website.	Instead,	we're	going	to	run	our	web	server	in	the	background	as
a	detached	process.

At	the	terminal	prompt,	type:

sudo	node	index.js	&

NOTE:	The	ampersand	at	the	end	of	the	line	instructs	the	system	to	run	the	preceeding	command	in
the	background.	When	we	construct	our	Dockerfile,	we	will	omit	the	ampersand	so	that	the	process
runs	in	the	foreground	and	creates	a	long-running	process	that	keeps	our	container	'alive'.

Download	Dependencies

When	you	run	this	command,	a	number	is	outputted	to	the	screen.	This	number	refers	to	a	process	id
(pid).	Keep	this	number	handy	as	we'll	use	it	below	to	'kill'	the	background	process.

Additionally,	you	should	see	a	message	stating	that	our	'server	is	listening	on	8080'.

Test	that	the	web	server	is	returning	our	site	by	typing	the	following:

curl	http://localhost:8080/

If	all	is	successful,	you	should	receive	some	HTML	source	code	back.

Stop	the	Background	Process
We	don't	need	the	website	running	any	longer	now	that	we	know	it	works.	Additionally,	if	we	kept	it
running,	it's	use	of	the	port	8080	could	create	potential	conflicts	if	another	service	(e.g.	container)	is
needing	that	port.

Referring	to	the	process	id	(pid)	above,	execute	the	following	command	with	your	id:

sudo	kill	<pid>

If	successful,	you	should	see	the	following	confirmation	message:

[1]+		Done																				sudo	node	index.js

Building	our	web	server	has	been	successful.	We	are	now	ready	to	move	forward	and	replicate	our
work	in	building	out	an	image.

Overview
Based	on	most	of	the	previous	steps,	we	are	ready	to	build	our	Dockerfile.	We	will	mimic	those	steps
for	automating	our	image	construction.

Review
In	preparation	of	writing	our	Dockerfile,	let's	review	all	the	steps	we've	performed	up	to	this	point.

1.	 Install	the	latest	version	of	Ubuntu
2.	 Update	the	package	references
3.	 Install	the	latest	packages
4.	 Install	and	configure	Docker
5.	 Install	Node.js
6.	 Install	Node	Package	Manager	(NPM)
7.	 Download	(clone)	the	sample	website
8.	 Download	website	dependencies
9.	 Run	the	web	server

As	a	reminder,	since	we	are	constructing	an	image,	we	can	ignore	step	4.	We	won't	need	Docker
installed	inside	of	the	image.

Create	the	Dockerfile
Let's	go	ahead	and	create	the	Dockerfile	contents.	We'll	then	examine	each	line	below.

1.	 Return	to	your	home	folder	by	typing	at	the	terminal	prompt,	 cd	~ .

2.	 Create	a	Dockerfile	using	the	 nano 	text	editor	by	typing	the	following:	 nano	Dockerfile .
Nano	is	reminiscent	of	the	old	DOS	editor.	Of	course,	you	can	you	 vim 	instead	if	you	are
comfortable	in	doing	so.
NOTE	'Dockerfile'	is	case-sensitive.

3.	 Enter	the	following	without	the	line	numbers.	The	line	numbers	are	provided	for	reference
below.

Construct	Dockerfile

1			FROM	ubuntu:latest
2			MAINTAINER	Your	Name	<you@yourcompany.com>
3
4			RUN	apt-get	update
5			RUN	apt-get	upgrade
6			RUN	apt-get	install	-y	nodejs
7			RUN	apt-get	install	-y	npm
8			RUN	ln	-s	/usr/bin/nodejs	/usr/bin/node
9			RUN	apt-get	install	-y	git
10
11		RUN	git	clone	https://github.com/AzureWorkshops/samples-simple-nodejs-websi
te.git	/var/www
12		WORKDIR	/var/www
13		RUN	npm	i
14
15		EXPOSE	8080
16
17		CMD	node	/var/www/index.js

4.	 To	save,	Ctrl+O

5.	 To	exit,	Ctrl+X

Explanation
First,	if	you	remember	from	the	previous	steps,	we	prepended	each	command	with	 sudo 	to	allow	the
command	to	be	executed	with	elevated	privileges.	By	default,	all	Docker	images	execute	under	the
identity	of	the	built-in	superuser	account	 root .	Therefore,	we	can	omit	the	 sudo .

Line	1:	Specifies	the	base	image,	including	the	tag,	with	which	we're	starting.	In	our	case,	we	are
using	the	minimal	Ubuntu	OS	as	the	base	image.

Line	2:	Specifies	the	owner	of	the	image	with	their	email	address.

Lines	4-8:	The	commands	we	executed	earlier	in	this	workshop	that	update	the	system	and	installs
Node.js.

Line	9:	We	were	not	required	to	install	 git 	in	our	virtual	machine.	However,	because	the	base
image	of	Ubuntu	doesn't	include	 git 	by	default,	we	need	to	install	it	manually.

Line	11:	Downloads	(clones)	the	sample	website	into	the	 /var/www 	local	folder.

Line	12:	 WORKDIR 	is	how	you	change	the	current	directory	(compared	to	 cd)	in	a	Dockerfile.	We	are
changing	to	the	website	home	directory.

Line	13:	Install	the	website's	dependencies.

Line	15:	Our	website	server	is	programmed	to	use	port	8080.	Therefore,	similar	to	a	firewall	in	the
image,	we	open,	or	expose,	the	port	to	the	outside	host.	We	will	bind	to	this	open	port	later	when	we
run	a	container	based	on	this	image.

Line	17:	This	starts	our	web	server.	We	could	have	used	the	 RUN 	directive,	but	the	 CMD 	directive	is

Line	17:	This	starts	our	web	server.	We	could	have	used	the	 RUN 	directive,	but	the	 CMD 	directive	is
designed	to	execute	our	long-running	process.	While,	technically,	we	could	have	multiple	 CMD 	lines
in	the	Dockerfile,	the	Docker	build	will	ignore	all	 CMD 	lines	except	the	last	one.

That's	it!	That's	all	there	is	to	creating	a	Dockerfile.

Overview
Now	that	we	have	our	Dockerfile,	let's	build	our	image	from	it.

Build	the	Docker	Image
Once	we	have	our	Dockerfile,	building	the	image	is	pretty	simple.

From	the	command	prompt,	type	 cd	~ 	to	ensure	you	are	in	your	home	folder,	then	type	the
following:

docker	build	-t	test/simpleweb	.

This	will	build	an	image	using	 test/simpleweb 	as	the	repository	name.	The	period	at	the	end
specifies	the	path	where	Docker	can	find	the	Dockerfile.

Watch	how	Docker	will	step	through	our	Dockerfile	to	build	our	image.	Keep	in	mind	while	you	watch
this	process	that	each	step	in	our	Dockerfile	constitutes	a	layer	in	our	image.	We'll	see	the	results	of
this	below.

Check	Your	Images
From	the	command	prompt,	type	the	following:

docker	images

You	should	see	something	similar	to:

Build	Image

REPOSITORY										TAG																	IMAGE	ID												CREATED												
	SIZE
test/simpleweb						latest														0bfaff1a6a2a								41	seconds	ago					
	486MB
ubuntu														latest														7b9b13f7b9c0								4	days	ago									
	118MB

Our	image	has	been	built	using	the	specified	repository	name.	You'll	also	notice	that	the	 ubuntu
image	has	been	downloaded.	This	is	because	the	build	process	required	Ubuntu	in	order	to	build	our
image.	Now	that	our	image	has	been	built,	you	could	delete	the	 ubuntu 	image	if	you	wanted	to.
Finally,	when	looking	at	the	image	sizes,	you'll	see	that	our	image	is	4	times	larger	due	installation	of
Node.js,	Git,	and	the	other	dependencies.	In	the	end,	however,	500MB	is	still	not	that	large.

View	Image	History
What	if	we	wanted	to	see	how	our	image	is	constructed?	Or,	what	if	we	wanted	to	see	exactly	how
much	disk	space	each	layer	of	our	image	required?	We	could	find	this	out	by	checking	the	image's
history.

docker	image	history	test/simpleweb

When	you	run	the	above	command,	you	see	each	command	along	from	our	Dockerfile	along	with	it's
layer	id	and	the	space	requirements,	if	any.

We've	now	built	a	custom	image	based	on	a	Dockerfile.	We	can	use	our	custom	image	to	deploy
containers	locally.	Or,	we	could	upload	our	image	to	a	central	repository	so	that	others	could
leverage	our	image's	functionality.

Overview
Our	custom	image	has	now	been	created	and	is	currently	sitting	in	our	local	repository.	Let's
instantiate	a	container	based	on	that	image.

Start	a	Container
To	start	a	container	from	our	image	is	very	simple.	The	only	thing	we	need	to	remember	is	exposing
the	internal	port	to	the	host.

docker	run	-d	-p	8080:8080	--name	'web_8080'	test/simpleweb	
docker	run	-d	-p	8081:8080	--name	'web_8081'	test/simpleweb
docker	run	-d	-p	8082:8080	--name	'web_8082'	test/simpleweb

We've	started	3	separated	instances	of	our	web	server.	We've	bound	the	web	server's	internal	port
8080	to	three	host	ports	(e.g	8080-8082).	We've	also	supplied	meaningful	names	to	our	containers.
We	can	reference	those	containers	by	the	names	we've	specified	for	easier	management.	For
example,	we	can	restart	or	stop	a	container	using	it's	name	instead	of	the	container	id.

Check	the	running	images:

docker	ps

You	should	see	something	like	the	following:

Deploy	Container

CONTAINER	ID								IMAGE															COMMAND																		CREATED							
							STATUS														PORTS																				NAMES
3d1929c8e1b5								test/simpleweb						"/bin/sh	-c	'node	..."			3	seconds	ago	
							Up	2	seconds								0.0.0.0:8082->8080/tcp			web_8082
323a65fa5143								test/simpleweb						"/bin/sh	-c	'node	..."			11	seconds	ago
							Up	10	seconds							0.0.0.0:8081->8080/tcp			web_8081
7d4fee5c8f89								test/simpleweb						"/bin/sh	-c	'node	..."			About	a	minute
	ago			Up	59	seconds							0.0.0.0:8080->8080/tcp			web_8080

Notice	that	all	three	containers	are	running,	but,	as	we've	specified,	are	bound	to	different	ports	and
have	custom	names.

For	practice,	restart	 web_8081 :

docker	restart	web_8081

Executing	the	command,	may	take	a	second.	After	it	completes,	check	the	running	images	again.	You
should	now	see	that	the	uptime	for	 web_8081 	is	less	than	the	other	two	containers.

We	are	left	with	successfully	creating	three	container	instances	running	our	custom	image.

Overview
The	final	part	of	this	workshop	is	to	practice	exposing	a	container	service	outside	of	Azure.	We're
going	to	create	a	simple	web	server	and	access	it	from	our	local	machine.

Network	Security	Group	(NSG)
Now	that	our	web	server	is	running,	let's	make	it	available	outside	of	Azure.

When	we	created	our	Ubuntu	virtual	machine,	we	accepted	the	defaults,	including	the	default
settings	for	our	NSG.	The	default	settings	only	allowed	SSH	(port	22)	access.	We	need	to	add	a	rule
to	our	NSG	to	allow	HTTP	traffic	over	our	three	ports	(8080-8082)	so	that	we	can	access	all	three
containers.

1.	 If	you	are	not	still	there,	go	back	to	the	Azure	portal	and	navigate	to	the	settings	of	your
Ubuntu	virtual	machine.

2.	 In	the	left	menu,	click	on	Network	interfaces	 .

3.	 This	will	open	the	Network	Interfaces	blade	for	your	Ubuntu	virtual	machine.	Click	on	the
singular,	listed	interface.

4.	 In	the	left	menu,	click	on	Network	security	group	 .

5.	 This	will	list	the	currently	active	NSG.	In	our	case,	it	should	be	the	NSG	that	was	created	with
our	virtual	machine	-	dockerfile-ubuntu-nsg.	Click	on	the	NSG	(NOTE:	Click	on	the	actual
NSG	link,	NOT	on	Edit).

6.	 In	the	left	menu,	click	on	Inbound	security	roles	 .

7.	 At	the	top	of	the	blade,	click	Add	 .

8.	 Enter	the	following	configuration:

Name:	allow-http
Priority:	1010
Source:	Any
Service:	Custom
Protocol:	Any

Expose	Site	in	Azure

Port	range:	8080-8082
Action:	Allow

9.	 Click	OK.

This	should	only	take	a	couple	of	seconds.	Once	you	see	the	rule	added,	open	a	new	browser	and
navigate	to	the	IP	address	of	your	Ubuntu	virtual	machine,	including	the	port	number.	The	IP	address
used	in	this	workshop's	screen	shots	is	52.170.85.112	(your	IP	address	will	be	different).	Using	the
aforementioned	IP	address,	I	would	direct	my	browser	to	http://52.170.85.112:8080.	I	would	also
test	the	other	2	port	numbers	(e.g.	8081,	8082).	You	should	see	the	'Hello	World'	page	at	all	three
URL/port	combinations.

Objective
All	of	our	work	in	this	workshop,	with	the	exception	of	the	small	Azure	configuration	at	the	end,	will
be	performed	on	a	single	virtual	machine.	Let's	get	started	creating	that	VM.

Create	a	Resource	Group
In	order	to	create	resources,	we	need	a	Resource	Group	to	place	them	in.

1.	 If	you	are	not	there	already,	go	ahead	and	click	on	the	Resource	Groups	 	in	the	Azure
Portal	to	open	the	Resource	Groups	blade.

2.	 At	the	top	of	the	Resource	Groups	blade,	click	on	Add	 .	This	will	open	a	panel	that	asks
for	some	basic	configuration	settings.

3.	 Complete	the	configuration	settings	with	the	following:

Resource	group	name:	azworkshops_dockerfile_centos_demo
Subscription:	<choose	your	subscription>
Resource	group	location:	<choose	your	location>

4.	 <Optional>	Check	Pin	to	dashboard	at	the	bottom	of	the	panel.

5.	 Click	Create.

6.	 It	should	only	take	a	second	for	the	resource	group	to	be	created.	Once	you	click	create,	the
configuration	panel	closes	and	returns	you	to	the	list	of	available	resource	groups.	Your
recently	created	group	may	not	be	visible	in	the	list.	Clicking	on	Refresh	 	at	the	top	of
the	Resource	Groups	blade	should	display	your	new	resource	group.

NOTE:	When	you	create	a	resource	group,	you	are	prompted	to	choose	a	location.	Additionally,	as
you	create	individual	resources,	you	will	also	be	prompted	to	choose	locations.	The	location	of
resource	groups	and	their	resources	can	be	different.	This	is	because	resource	groups	store	metadata
describing	their	contained	resources;	and,	due	to	some	types	of	compliance	that	your	company	may
adhere	to,	you	may	need	to	store	that	metadata	in	a	different	location	than	the	resources
themselves.	For	example,	if	you	are	a	US-based	company,	you	may	choose	to	keep	the	metadata
state-side	while	creating	resources	in	foreign	regions	to	reduce	latency	for	the	end-user.

Create	Virtual	Machine

Create	a	Virtual	Machine
Now	that	we	have	an	available	resource	group,	let's	create	the	actual	CentOS	server.

1.	 If	you	are	not	there	already,	go	ahead	and	navigate	to	the
azworkshops_dockerfile_centos_demo	resource	group.

2.	 At	the	top	of	the	blade	for	our	group,	click	on	Add	 .	This	will	display	the	blade	for	the
Azure	Marketplace	allowing	you	to	deploy	a	number	of	different	solutions.

3.	 We	are	interested	in	deploying	a	CentOS	server.	Therefore,	in	the	Search	Everything	box,
type	in	CentOS-based.	This	will	display	a	couple	of	different	versions.	Since	we	want	to
deploy	the	latest	stable	version	of	CentOS,	from	the	displayed	options,	choose	CentOS-
based	7.3.

4.	 Choose	the	image	published	by	"Rogue	Wave	Software".

5.	 This	will	display	a	blade	providing	more	information	about	the	server	we	have	chosen.	To
continue	creating	the	server,	choose	Create.

6.	 We	are	now	prompted	with	some	configuration	options.	There	are	3	sections	we	need	to
complete	and	the	last	section	is	a	summary	of	our	chosen	options.

1.	 Basics

Name:	dockerfile-centos
VM	disk	type:	SSD
Username:	localadmin
Authentication	type:	Password
(NOTE:	You	can	choose	SSH	if	you	are	familiar	with	how	to	set	this	up.	If	you
are	not,	we	will	do	this	in	a	later	workshop.	However,	for	this	workshop,
Password	authentication	is	sufficient.)
Password:	Pass@word1234
Confirm	password:	<same	as	above>
Subscription:	<choose	your	subscription>
Resource	group:	Use	existing	-	azworkshops_dockerfile_centos_demo
Location:	<choose	a	location>

2.	 Size

DS1_V2
3.	 Settings

Use	managed	disks:	No

Storage	account:	(click	on	it	&	Create	New)

Name:	dfcentosdata<random	number>	(ex.	dfcentosdata123456)
(NOTE:	This	name	must	be	globally	unique,	so	it	cannot	already	be
used.)
Performance:	Premium
Replication:	Locally-redundant	storage	(LRS)

Virtual	network:	<accept	default>	(e.g.	(new)
azworkshops_dockerfile_centos_demo-vnet)

Subnet:	<accept	default>	(e.g.	default	(172.16.1.0/24))

Public	IP	address:	<accept	default>	(e.g.	(new)	dockerfile-centos-ip)

Network	security	group	(firewall):	<accept	default>	(e.g.	(new)	dockerfile-
centos-nsg)

Extensions:	No	extensions

Availability	set:	None

Boot	diagnostics:	Enabled

Guest	OS	diagnostics:	Disabled

Diagnostics	storage	account:	(click	on	it	&	Create	New)

Name:	dfcentosdiags<random	number>	(ex.
dfcentosdiags123456)
Performance:	Standard
Replication:	Locally-redundant	storage	(LRS)

4.	 Summary	(just	click	OK	to	continue)

This	machine	is	relatively	small,	but	with	containers,	it	can	still	deliver	some	pretty	impressive
performance.	Once	scheduled,	it	may	take	a	minute	or	two	for	the	machine	to	be	created	by	Azure.
Once	it	has	been	created,	Azure	should	open	the	machine's	status	blade	automatically.

Connect	to	the	Virtual	Machine
Once	your	machine	has	been	created,	we	can	remotely	connect	to	it	using	secure	shell	(SSH).	These
instructions	assume	that	you	do	not	have	strong	familiarity	with	SSH	and/or	that	you	have	no	built-in
SSH	client	in	your	local	OS.	For	this	reason,	we	will	be	using	the	PuTTY	client	we	downloaded	earlier
for	the	workshop.	However,	if	you	are	more	comfortable	using	another	Telnet/SSH	client	(e.g.	MacOS,
Linux,	Windows	Sub-Layer	(WSL)),	please	feel	free	to	use	it.

Get	Public	IP
1.	 If	it	is	not	already	open,	navigate	to	the	Overview	blade	of	your	newly	created	virtual

machine.

2.	 In	the	top	section	of	the	blade,	in	the	right	column,	you	should	see	a	Public	IP	address
listed.	

3.	 Copy	the	IP	address.

Connect	with	SSH
1.	 Open	PuTTY.

2.	 In	the	configuration	window:

Hostname:	<IP	address	from	previous	step>
Port:	22
Connection	type:	SSH

3.	 Click	Open

4.	 In	the	security	prompt,	click	Yes.

5.	 You	will	then	connect	to	the	remote	CentOS	server.

6.	 Enter	the	username	and	password	from	above	(e.g.	localadmin	and	Pass@word1234,
respectively).

7.	 You	should	then	see	the	 bash 	prompt:

[localadmin@dockerfile-centos	~]$

Congratulations.	You	have	successfully	created	and	connected	to	your	remote	CentOS	server	in
Azure.	You	are	now	ready	to	install	the	Docker	runtime.

Overview
We	have	just	created	our	CentOS	server.	We	now	need	to	apply	any	available	system	updates	along
with	installing	and	configuring	Docker	to	begin	working	with	containers.

Install	Updates
Just	like	any	other	operating	system,	updates	are	periodically	released	to	support	new	features	and
patch	any	potential	security	threats.	We	will	apply	the	updates	first.

1.	 If	you	have	not	already,	connect	to	your	remote	CentOS	server	and	login.

2.	 From	the	command	prompt,	type	the	following	to	automatically	install	all	available	updates:

sudo	yum	update	-y

3.	 You'll	be	required	to	re-enter	your	password.

4.	 Depending	on	the	number	and	size	of	available	updates,	this	process	may	take	a	few
minutes.	Now	would	be	a	good	time	to	take	a	break.

Install	Updates

Overview
In	this	step,	we	are	going	to	install	Docker.	This	is	one	of	the	steps	that	will	actually	not	be	performed
inside	of	the	container	image.	But,	of	course,	we	need	Docker	on	the	host	in	order	to	run	containers.

Install	Docker
We	now	have	an	updated	CentOS	operating	system.	We	are	ready	to	install	Docker.

1.	 First,	let's	remove	any	remnants	of	older	versions	of	Docker	to	ensure	that	we	run	the	latest
version.	From	the	command	prompt,	type	the	following:

sudo	yum	remove	docker	docker-common	container-selinux	docker-selinux	docker-en
gine

Copy	&	Paste
You	can	paste	this	into	PuTTY	by	right-clicking	the	terminal	screen.

2.	 We	need	to	install	dependencies	for	Docker:

sudo	yum	install	-y	yum-utils	device-mapper-persistent-data	lvm2

3.	 Now,	we	need	to	tell	CentOS	where	the	Docker	repository	is	located.	From	the	command
prompt,	type	(or	paste)	the	following:

sudo	yum-config-manager	--add-repo	https://download.docker.com/linux/centos/doc
ker-ce.repo

Install	Docker

4.	 Now	that	the	new	repository	has	been	added,	we	need	to	update	the	 yum 	package	index:

sudo	yum	makecache	fast

5.	 We	need	to	query	for	the	latest	version	of	Docker	available	in	the	repository:

yum	list	docker-ce.x86_64		--showduplicates	|sort	-r

6.	 You	should	see	outputed	list	similar	to	the	following:

docker-ce.x86_64												17.03.1.ce-1.el7.centos													docker-ce-stabl
e
docker-ce.x86_64												17.03.0.ce-1.el7.centos													docker-ce-stabl
e

7.	 The	latest	version	of	Docker	will	be	the	top	line.	The	version	we	want	is	listed	in	the	middle
column.	In	this	case	it's	 17.03.1.ce-1.el7.centos .	To	install,	run	the	following	command
replacing	 <VERSION> 	with	the	version	listed	in	the	center	column.

sudo	yum	install	-y	docker-ce-<VERSION>

8.	 Installing	the	Docker	engine	may	take	an	additional	minute	or	two.

9.	 Map	the	storage	device	for	Docker	to	use.	We'll	need	to	temporarily	promote	ourselves	to	the
highest	user	permission	level.

sudo	bash
mkdir	/etc/docker
echo	'{	"storage-driver":	"devicemapper"	}'	>	/etc/docker/daemon.json
exit

10.	 Finally,	start	Docker:

sudo	systemctl	start	docker

Additional	Configuration
To	simplify	running	and	managing	Docker,	there's	some	additional	configuration	that	we	need	to
implement.	While	this	section	is	optional,	it	is	recommended	to	make	managing	Docker	much	easier.

Ensure	Docker	Engine	is	Running
1.	 From	the	command	prompt,	type:

sudo	systemctl	status	docker

2.	 You	should	see	something	similar	to	the	following:

●	docker.service	-	Docker	Application	Container	Engine
			Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	vendor	preset:	
enabled)
			Active:	active	(running)	since	Sun	2017-06-04	22:38:16	UTC;	4min	10s	ago
					Docs:	https://docs.docker.com
	Main	PID:	32844	(dockerd)

3.	 Because	the	service	is	running,	we	can	now	use	the	 docker 	command	later	in	this
workshop.

Enable	Docker	Engine	at	Startup
Let's	make	sure	the	Docker	engine	is	configured	to	run	on	system	startup	(and	reboot).

1.	 From	the	command	prompt,	type:

sudo	systemctl	enable	docker

2.	 You	should	see	something	similar	to	the	following:

Created	symlink	from	/etc/systemd/system/multi-user.target.wants/docker.service
	to	/usr/lib/systemd/system/docker.service.

Elevate	Your	Privileges
Be	default,	running	the	 docker 	command	requires	root	privileges	-	that	is,	you	have	to	prefix	the
command	with	 sudo .	It	can	also	be	run	by	a	user	in	the	docker	group,	which	is	automatically
created	during	the	install	of	Docker.	If	you	attempt	to	run	the	 docker 	command	without	prefixing	it
with	 sudo 	or	without	being	in	the	docker	group,	you'll	get	an	output	like	the	following:

docker:	Cannot	connect	to	the	Docker	daemon.	Is	the	docker	daemon	running	on	th
is	host?.
See	'docker	run	--help'.

To	avoid	typing	 sudo 	whenever	you	run	the	 docker 	command,	add	your	username	to	the	docker
group:

sudo	usermod	-aG	docker	$(whoami)

You	will	then	need	to	log	out	and	back	in	for	the	changes	to	take	effect.

If	you	need	to	add	another	user	to	the	 docker 	group	(one	in	which	you	have	not	logged	in	as
currently),	simply	provide	that	username	explicitly	in	the	command:

sudo	usermod	-aG	docker	<username>

You've	successfully	installed	the	Docker	engine.	You	have	also	configured	it	to	run	at	startup	and
have	added	yourself	to	the	Docker	group	so	that	you	have	sufficient	privileges	for	running	Docker.

Overview
Now	that	we	have	the	host	machine	configured	for	Docker,	we're	going	to	begin	building	our	web
server.	Keep	in	mind	that	this	virtual	machine	is	serving	two	purposes:	1)	our	Docker	host;	and,	2)
our	temporary	web	server	until	our	image	is	built.

Install	Node.js
Node.js	is	a	JavaScript	execution	engine	that	allows	us	to	write	server-side	JavaScript	and	utilize	it
like	any	other	executable	file.	With	Node.js,	we	will	host	a	very	simple	web	server.

Add	EPEL	Repository
One	installation	method	for	installing	Node.js	uses	the	EPEL	(Extra	Packages	for	Enterprise	Linux)
repository	that	is	available	for	CentOS	and	related	distributions.

To	gain	access	to	the	EPEL	repo,	you	must	modify	the	repo-list	of	your	installation.	Fortunately,	we
can	reconfigure	access	to	this	repository	by	installing	a	package	available	in	our	current	repos	called
epel-release .

sudo	yum	install	-y	epel-release

Download	and	Install	Node.js	Runtime
The	Node.js	runtime	is	what	is	responsible	for	hosting	and	executing	our	JavaScript.

From	the	terminal	prompt,	type:

sudo	yum	install	-y	nodejs

Download	and	Install	NPM
NPM	is	an	abbreviation	for	Node	Package	Manager.	NPM	allows	us	to	install	Node.js	dependencies	for
our	applications.

At	the	prompt,	type:

Install	Node.js

sudo	yum	install	-y	npm

Verify	Installation
Let's	make	sure	our	installation	was	successful.

At	the	prompt,	type:

node	-v
npm	-v

You	should	receive	version	numbers	for	both	commands.

We've	now	successfully	completed	the	installation	of	Node.js	and	the	Node	Package	Manager.

Overview
We've	downloaded	most	of	our	dependencies.	In	this	step	we	will	download	a	demo	web	site	from
GitHub,	a	remote	source	code	repository.

Clone	the	Website
'Cloning'	is	the	method	in	which	you	download	a	remote	repository	to	your	local	machine.	We	are
going	to	clone	the	demo	web	site	to	the	default	web	hosting	folder	on	our	system.

Install	Git
Git	provides	a	command-line	interface	(CLI)	for	interacting	with	Git	repositories.	We	need	to	install
Git	on	our	CentOS	machine.

sudo	yum	install	-y	git

Download	the	Website
From	the	command	prompt,	type	the	following:

sudo	git	clone	https://github.com/AzureWorkshops/samples-simple-nodejs-website.
git	/var/www

You	should	see	something	similar	to	the	following:

Download	Sample	Website

Cloning	into	'/var/www'...
remote:	Counting	objects:	9,	done.
remote:	Compressing	objects:	100%	(7/7),	done.
remote:	Total	9	(delta	0),	reused	6	(delta	0),	pack-reused	0
Unpacking	objects:	100%	(9/9),	done.
Checking	connectivity...	done.

The	website	source	code	has	now	been	downloaded.

Overview
Even	though	we've	installed	system	dependencies,	our	website	has	a	couple	of	library	dependencies
that	we	need	to	install.	We'll	also	ensure	that	the	website	is	functioning	correctly,	before	we	proceed
to	build	our	Dockerfile.

Download	Website	Dependencies
We'll	need	to	enter	into	the	website's	main	folder	to	install	the	dependencies.

Type	the	following	into	the	terminal:

cd	/var/www
sudo	npm	i

You	should	see	a	number	of	progress	bars	displayed	as	dependencies	are	downloaded	followed	by
what	looks	like	a	folder	hierarchy.

Test	Our	Website
The	first	thing	we	need	to	do	is	run	our	web	hosting	server	which	is	handled	by	Node.js.	If	we	ran	this
normally	from	the	command-line,	it	would	block	all	other	input.	We	would	then	have	to	open	a
second	terminal	to	test	our	website.	Instead,	we're	going	to	run	our	web	server	in	the	background	as
a	detached	process.

At	the	terminal	prompt,	type:

sudo	node	index.js	&

NOTE:	The	ampersand	at	the	end	of	the	line	instructs	the	system	to	run	the	preceeding	command	in
the	background.	When	we	construct	our	Dockerfile,	we	will	omit	the	ampersand	so	that	the	process
runs	in	the	foreground	and	creates	a	long-running	process	that	keeps	our	container	'alive'.

Download	Dependencies

When	you	run	this	command,	a	number	is	outputted	to	the	screen.	This	number	refers	to	a	process	id
(pid).	Keep	this	number	handy	as	we'll	use	it	below	to	'kill'	the	background	process.

Additionally,	you	should	see	a	message	stating	that	our	'server	is	listening	on	8080'.

Test	that	the	web	server	is	returning	our	site	by	typing	the	following:

curl	http://localhost:8080/

If	all	is	successful,	you	should	receive	some	HTML	source	code	back.

Stop	the	Background	Process
We	don't	need	the	website	running	any	longer	now	that	we	know	it	works.	Additionally,	if	we	kept	it
running,	it's	use	of	the	port	8080	could	create	potential	conflicts	if	another	service	(e.g.	container)	is
needing	that	port.

Referring	to	the	process	id	(pid)	above,	execute	the	following	command	with	your	id:

sudo	kill	<pid>

If	successful,	you	should	see	the	following	confirmation	message:

[1]+		Exit	143																		sudo	node	index.js

Building	our	web	server	has	been	successful.	We	are	now	ready	to	move	forward	and	replicate	our
work	in	building	out	an	image.

Overview
Based	on	most	of	the	previous	steps,	we	are	ready	to	build	our	Dockerfile.	We	will	mimic	those	steps
for	automating	our	image	construction.

Review
In	preparation	of	writing	our	Dockerfile,	let's	review	all	the	steps	we've	performed	up	to	this	point.

1.	 Install	the	latest	version	of	CentOS
2.	 Install	the	latest	packages
3.	 Install	and	configure	Docker
4.	 Add	a	reference	to	EPEL
5.	 Install	Node.js
6.	 Install	Node	Package	Manager	(NPM)
7.	 Install	Git
8.	 Download	(clone)	the	sample	website
9.	 Download	website	dependencies
10.	 Run	the	web	server

As	a	reminder,	since	we	are	constructing	an	image,	we	can	ignore	step	3.	We	won't	need	Docker
installed	inside	of	the	image.

Create	the	Dockerfile
Let's	go	ahead	and	create	the	Dockerfile	contents.	We'll	then	examine	each	line	below.

1.	 Return	to	your	home	folder	by	typing	at	the	terminal	prompt,	 cd	~ .

2.	 Create	a	Dockerfile	using	the	 nano 	text	editor	by	typing	the	following:	 nano	Dockerfile .
Nano	is	reminiscent	of	the	old	DOS	editor.	Of	course,	you	can	you	 vim 	instead	if	you	are
comfortable	in	doing	so.
NOTE	'Dockerfile'	is	case-sensitive.

3.	 Enter	the	following	without	the	line	numbers.	The	line	numbers	are	provided	for	reference
below.

Construct	Dockerfile

1			FROM	centos:latest
2			MAINTAINER	Your	Name	<you@yourcompany.com>
3
4			RUN	yum	update	-y
5			RUN	yum	install	-y	epel-release
6			RUN	yum	install	-y	nodejs
7			RUN	yum	install	-y	npm
8			RUN	yum	install	-y	git
9
10		RUN	git	clone	https://github.com/AzureWorkshops/samples-simple-nodejs-websi
te.git	/var/www
11		WORKDIR	/var/www
12		RUN	npm	i
13
14		EXPOSE	8080
15
16		CMD	node	/var/www/index.js

4.	 To	save,	Ctrl+O

5.	 To	exit,	Ctrl+X

Explanation
First,	if	you	remember	from	the	previous	steps,	we	prepended	each	command	with	 sudo 	to	allow	the
command	to	be	executed	with	elevated	privileges.	By	default,	all	Docker	images	execute	under	the
identity	of	the	built-in	superuser	account	 root .	Therefore,	we	can	omit	the	 sudo .

Line	1:	Specifies	the	base	image,	including	the	tag,	with	which	we're	starting.	In	our	case,	we	are
using	the	minimal	CentOS	OS	as	the	base	image.

Line	2:	Specifies	the	owner	of	the	image	with	their	email	address.

Lines	4-8:	The	commands	we	executed	earlier	in	this	workshop	that	update	the	system	and	installs
Node.js	and	Git.

Line	10:	Downloads	(clones)	the	sample	website	into	the	 /var/www 	local	folder.

Line	11:	 WORKDIR 	is	how	you	change	the	current	directory	(compared	to	 cd)	in	a	Dockerfile.	We	are
changing	to	the	website	home	directory.

Line	12:	Install	the	website's	dependencies.

Line	14:	Our	website	server	is	programmed	to	use	port	8080.	Therefore,	similar	to	a	firewall	in	the
image,	we	open,	or	expose,	the	port	to	the	outside	host.	We	will	bind	to	this	open	port	later	when	we
run	a	container	based	on	this	image.

Line	16:	This	starts	our	web	server.	We	could	have	used	the	 RUN 	directive,	but	the	 CMD 	directive	is
designed	to	execute	our	long-running	process.	While,	technically,	we	could	have	multiple	 CMD 	lines
in	the	Dockerfile,	the	Docker	build	will	ignore	all	 CMD 	lines	except	the	last	one.

That's	it!	That's	all	there	is	to	creating	a	Dockerfile.

Overview
Now	that	we	have	our	Dockerfile,	let's	build	our	image	from	it.

Build	the	Docker	Image
Once	we	have	our	Dockerfile,	building	the	image	is	pretty	simple.

From	the	command	prompt,	type	 cd	~ 	to	ensure	you	are	in	your	home	folder,	then	type	the
following:

docker	build	-t	test/simpleweb	.

This	will	build	an	image	using	 test/simpleweb 	as	the	repository	name.	The	period	at	the	end
specifies	the	path	where	Docker	can	find	the	Dockerfile.

Watch	how	Docker	will	step	through	our	Dockerfile	to	build	our	image.	Keep	in	mind	while	you	watch
this	process	that	each	step	in	our	Dockerfile	constitutes	a	layer	in	our	image.	We'll	see	the	results	of
this	below.

Check	Your	Images
From	the	command	prompt,	type	the	following:

docker	images

You	should	see	something	similar	to:

Build	Image

REPOSITORY										TAG																	IMAGE	ID												CREATED												
	SIZE
test/simpleweb						latest														d2c9a502fd30								3	minutes	ago						
	469	MB
centos														latest														3bee3060bfc8								37	hours	ago							
	193	MB

Our	image	has	been	built	using	the	specified	repository	name.	You'll	also	notice	that	the	 centos
image	has	been	downloaded.	This	is	because	the	build	process	required	CentOS	in	order	to	build	our
image.	Now	that	our	image	has	been	built,	you	could	delete	the	 centos 	image	if	you	wanted	to.
Finally,	when	looking	at	the	image	sizes,	you'll	see	that	our	image	is	4	times	larger	due	installation	of
Node.js,	Git,	and	the	other	dependencies.	In	the	end,	however,	500MB	is	still	not	that	large.

View	Image	History
What	if	we	wanted	to	see	how	our	image	is	constructed?	Or,	what	if	we	wanted	to	see	exactly	how
much	disk	space	each	layer	of	our	image	required?	We	could	find	this	out	by	checking	the	image's
history.

docker	image	history	test/simpleweb

When	you	run	the	above	command,	you	see	each	command	along	from	our	Dockerfile	along	with	it's
layer	id	and	the	space	requirements,	if	any.

We've	now	built	a	custom	image	based	on	a	Dockerfile.	We	can	use	our	custom	image	to	deploy
containers	locally.	Or,	we	could	upload	our	image	to	a	central	repository	so	that	others	could
leverage	our	image's	functionality.

Overview
Our	custom	image	has	now	been	created	and	is	currently	sitting	in	our	local	repository.	Let's
instantiate	a	container	based	on	that	image.

Start	a	Container
To	start	a	container	from	our	image	is	very	simple.	The	only	thing	we	need	to	remember	is	exposing
the	internal	port	to	the	host.

docker	run	-d	-p	8080:8080	--name	'web_8080'	test/simpleweb	
docker	run	-d	-p	8081:8080	--name	'web_8081'	test/simpleweb
docker	run	-d	-p	8082:8080	--name	'web_8082'	test/simpleweb

We've	started	3	separated	instances	of	our	web	server.	We've	bound	the	web	server's	internal	port
8080	to	three	host	ports	(e.g	8080-8082).	We've	also	supplied	meaningful	names	to	our	containers.
We	can	reference	those	containers	by	the	names	we've	specified	for	easier	management.	For
example,	we	can	restart	or	stop	a	container	using	it's	name	instead	of	the	container	id.

Check	the	running	images:

docker	ps

You	should	see	something	like	the	following:

Deploy	Container

CONTAINER	ID								IMAGE															COMMAND																		CREATED							
							STATUS														PORTS																				NAMES
3d1929c8e1b5								test/simpleweb						"/bin/sh	-c	'node	..."			3	seconds	ago	
							Up	2	seconds								0.0.0.0:8082->8080/tcp			web_8082
323a65fa5143								test/simpleweb						"/bin/sh	-c	'node	..."			11	seconds	ago
							Up	10	seconds							0.0.0.0:8081->8080/tcp			web_8081
7d4fee5c8f89								test/simpleweb						"/bin/sh	-c	'node	..."			About	a	minute
	ago			Up	59	seconds							0.0.0.0:8080->8080/tcp			web_8080

Notice	that	all	three	containers	are	running,	but,	as	we've	specified,	are	bound	to	different	ports	and
have	custom	names.

For	practice,	restart	 web_8081 :

docker	restart	web_8081

Executing	the	command,	may	take	a	second.	After	it	completes,	check	the	running	images	again.	You
should	now	see	that	the	uptime	for	 web_8081 	is	less	than	the	other	two	containers.

We	are	left	with	successfully	creating	three	container	instances	running	our	custom	image.

Overview
The	final	part	of	this	workshop	is	to	practice	exposing	a	container	service	outside	of	Azure.	We're
going	to	create	a	simple	web	server	and	access	it	from	our	local	machine.

Network	Security	Group	(NSG)
Now	that	our	web	server	is	running,	let's	make	it	available	outside	of	Azure.

When	we	created	our	CentOS	virtual	machine,	we	accepted	the	defaults,	including	the	default
settings	for	our	NSG.	The	default	settings	only	allowed	SSH	(port	22)	access.	We	need	to	add	a	rule
to	our	NSG	to	allow	HTTP	traffic	over	our	three	ports	(8080-8082)	so	that	we	can	access	all	three
containers.

1.	 If	you	are	not	still	there,	go	back	to	the	Azure	portal	and	navigate	to	the	settings	of	your
CentOS	virtual	machine.

2.	 In	the	left	menu,	click	on	Network	interfaces	 .

3.	 This	will	open	the	Network	Interfaces	blade	for	your	CentOS	virtual	machine.	Click	on	the
singular,	listed	interface.

4.	 In	the	left	menu,	click	on	Network	security	group	 .

5.	 This	will	list	the	currently	active	NSG.	In	our	case,	it	should	be	the	NSG	that	was	created	with
our	virtual	machine	-	dockerfile-centos-nsg.	Click	on	the	NSG	(NOTE:	Click	on	the	actual
NSG	link,	NOT	on	Edit).

6.	 In	the	left	menu,	click	on	Inbound	security	roles	 .

7.	 At	the	top	of	the	blade,	click	Add	 .

8.	 Enter	the	following	configuration:

Name:	allow-http
Priority:	1010
Source:	Any
Service:	Custom
Protocol:	Any

Expose	Site	in	Azure

Port	range:	8080-8082
Action:	Allow

9.	 Click	OK.

This	should	only	take	a	couple	of	seconds.	Once	you	see	the	rule	added,	open	a	new	browser	and
navigate	to	the	IP	address	of	your	CentOS	virtual	machine,	including	the	port	number.	The	IP	address
used	in	this	workshop's	screen	shots	is	52.170.85.112	(your	IP	address	will	be	different).	Using	the
aforementioned	IP	address,	I	would	direct	my	browser	to	http://52.170.85.112:8080.	I	would	also
test	the	other	2	port	numbers	(e.g.	8081,	8082).	You	should	see	the	'Hello	World'	page	at	all	three
URL/port	combinations.

